viernes, 29 de marzo de 2013

Recapitulación 10


Equipo
1
2
3
4
5
6

El martes 19 de marzo el profesor registro la tarea, después realizamos experimentos sobre el espectro electromagnético utilizando un CD, lentes holográficos y un espectroscopio.
El día jueves 21 realizamos una práctica de campo en la cual subimos al cerro de Zacatepetl y ahí realizamos el mismo experimento del espectro electromagnético.
El día martes se realizo un experimento con un CD, lentes holográficos y un espectroscopio.
Se registro la tarea y se verifico el blog.
El día jueves se realizo una práctica de campo a el cerro de Zacatepetl y se realizaron los mismos experimentos del espectro electromagnético Fin…
El martes realizamos un experimento u observamos un espectro electromagnetico con unos materiales especial y unos lentes también reflejamos el espectro de un espejo, un cd , el proyector y el sol. El dia jueves salimos al cerro del Zacatepetl a observar el espectro del sol con un vidrio especial de soldadura y también con los lentes.
El día martes se hizo registro de la tarea y se realizo una práctica para ver los efectos luminosos con un CD, lentes holográficos y un espectroscopio.
El día jueves se realizo una práctica al cerro del Zacatepetl y se realizo la misma practica pero ahora usando como iluminador la luz solar.
El dia martes el profesor califico la tarea después se contestaron las preguntas que pone el profesor.
El dia jueves se hizo una visita al cerro de zacatepetl para poder revisar los espectros que proyecta la luz solar.
El martes el profesor registro la tarea, posteriormente se contestaron preguntas sobre el tema de la semana. Con CD observamos el esp.ectro electromagnético a través de una lámpara y la luz del sol.
El jueves tuvimos un pequeño recorrido por el cerro del Zacatepetl, donde en la punta se observo el espectro electromagnético a la luz del sol.

Espectro electromagnético solar y de lámpara de iluminación (actividad 16)




Detectar con un disco compacto, el espectro electromagnético generado por la luz solar y de una lámpara fluorescente.

Completar la información en los cuadros correspondientes.

Determinar el rango de frecuencias del espectro electromagnético:



Longitud de onda
(µm)
Longitud de onda
(Ao)
Luz Ultravioleta (UV)

Menor a 0.4
Menor a 4000



Luz Visible
Violeta
400 µm
380–450 nm
Azul
450 µm
450–495 nm
Verde
500 µm
495–570 nm
Amarillo
550 µm
570–590 nm
Ambar
600 µm
590–620 nm
Rojo
650 µm
620–750 nm
Luz Infrarroja

Mayor a 0.7
Mayor a 7000



Equipo
Tema
Descripción de las fuentes

3
La Luz
Naturales o artificiales, por ejemplo el sol(natural) y una lámpara(artificial)

2
Rayos infrarrojo
La radiación infrarroja, o radiación IR es un tipo de radiación electromagnética y térmica, de mayor longitud de onda que la luz visible, pero menor que la de las microondas. Consecuentemente, tiene menor frecuencia que la luz visible y mayor que las microondas. Su rango de longitudes de onda va desde unos 0,7 hasta los 1000 micrómetros. La radiación infrarroja es emitida por cualquier cuerpo cuya temperatura sea mayor que 0 Kelvin, es decir, −273,15 grados Celsius (cero absoluto).

6
Ondas de radio
Las ondas de radio son un tipo de radiación electromagnética. Una onda de radio tiene una longitud de onda mayor que la luz visible. Las ondas de radio se usan extensamente en las comunicaciones.

5
Rayos Ultravioleta
Esta radiación puede ser producida por los rayos solares y produce varios efectos en la salud.

4
Rayos X
Se usan los tubos de rayos X, que pueden ser de dos clases: tubos con filamento o tubos con gas.

1
Rayos gamma
La radiación gamma o rayos gamma (γ) es un tipo de radiación electromagnética, y por tanto constituida por fotones, producida generalmente por elementos radiactivos o por procesos subatómicos como la aniquilación de un par positrón-electrón. También se genera en fenómenos astrofísicos de gran violencia.






Reflejo de la lámpara en el Cd

CD reflejado en el techo con ayuda del proyector

Reflejo de la lámpara en el Cd

práctica de campo
práctica de campo

práctica de campo

práctica de campo


Energía de ondas electromagnéticas e Importancia tecnológica de las ondas electromagnéticas




Preguntas
Energía de ondas electromagnéticas Y unidades
Importancia tecnológica de las ondas electromagnéticas
Ejemplos en industria. ¿Cómo funcionan?
Comunicaciones
Medicina
Astronomía
Equipo
1
5
4
6
3
2
Respuestas

Son aquellas ondas que no necesitan un medio material para propagarse. Incluyen entre otras, la luz visible y las ondas de radio, televisión y telefonía.
Todas se propagan en el vacio a una velocidad constante muy alta (300000) km/s) pero no infinita.
Se propagan mediante una oscilación de campos eléctricos y magnéticos.

El  uso de la tecnología de comunicación inalámbrica está aumentando rápidamente, en particular los teléfonos celulares y sus torres de transmisión asociadas están extendiéndose.

Radiación infrarroja: en la industria textil se utiliza para identificar colorantes.
Visión nocturna, transmisiones de señales a corta distancia (Control remoto)

Telefonía, radio y televisión (ondas de baja frecuencia)

Los rayos X principalmente como radiografías  , maquinas a nivel microscópico los rayos gamma para esterilizar equipo medico

La radioastronomía, importante rama de la astronomía, estudia los cuerpos celestes a través de sus emisiones en el dominio de las ondas de radio.

Programa de física 2

Espectro Electromagnético (actividad 15)





Material:
Lentes estereoscópicos, vela, lámpara fluorescente, luz solar. 

Procedimiento:

Observar con los lentes estereoscópicos, la luz que emiten la vela, lámpara fluorescente y luz solar, comparar los colores observados.
















Generadores (transformación de energía mecánica en eléctrica), Campo electromagnético y Ondas electromagnéticas: Propiedades Espectro electromagnétic




Preguntas
¿Qué es un generador?
¿Qué tipos de generadores eléctricos existen?
Ejemplo industrial de generador eléctrico
¿Qué es el campo electromagnético?
¿Cómo se clasifican las Ondas electromagnéticas?
¿Qué propiedades tiene el Espectro electromagnético?
Equipo
3
4
2
1
6
5
Respuestas
Es una maquina eléctrica que realiza el proceso inverso que un motor eléctrico, el cual transforma la energía eléctrica en energía mecánica. Aunque la corriente generada es corriente alterna puede ser rectificada para obtener una corriente continua.
Generador de voltaje  o tensión: un generador de voltaje ideal mantiene un voltaje fijo entre sus terminales con independencia de la resistencia de la carga Rc que pueda estar conectada entre ellos.

Generador d corriente o intensidad: un generador de corriente constante por un circuito externo con independencia de la resistencia de la carga que pueda estar conectado entre ellos.
Rayos X
Radiofrecuencia
Microondas
Rayos T
Radiación Infrarroja
Radiación Visible
Luz ultravioleta
Rayos Gamma.
Un campo electromagnético es un campo físico de tipo tensorial producido por aquellos elementos cargados eléctricamente que afectan a partículas con cargas eléctricas.
El campo electromagnético se divide en “una parte eléctrica” y en una “parte magnética”.

Ondas de radio: Su frecuencia oscila desde unos pocos Hercios hasta mil millones.
Microondas: Su frecuencia va desde los mil millones hasta casi el millón de hercios.
Rayos infra rojos:
Los tránsitos energéticos implicados en rotaciones y vibraciones de las moléculas caen dentro del rango de la frecuencia.
Luz visible: Incluye una franja estrecha de frecuencias capaces de estimular el ojo humano.
Rayos ultravioleta: Su fuente natural es el sol, son producidas saltos de electrones en átomos y moléculas excitadas.
Rayos x: Radiación electromagnética invisible capaz de atravesar cuerpos, una radiación prolongada produce cáncer.
Rayos gama: Frecuencias mayores 1.1019 HZ.
Las ondas del espectro electromagnético poseen picos o crestas, así como valles o vientres. La distancia horizontal existente entre dos picos consecutivos, dos valles consecutivos, o también el doble de la distancia existente entre un nodo y otro de la onda electromagnética, medida en múltiplos o submúltiplos del metro (m), constituye lo que se denomina “longitud de onda”.

Motor eléctrico (actividad 14)


Motor eléctrico



Materiales Necesarios:
• Una pila alcalina de tipo ' D ' o una pila de petaca
• Cinta adhesiva
• Dos clips de papel (cuanto más grandes mejor)
• Un imán rectangular (como los que se usan en las neveras)
• Cable de cobre esmaltado grueso (no con funda de plástico)
• Un tubo de cartón de papel higiénico o de cocina (de poco diámetro)
• Papel de lija fino
• Opcional: Pegamento, bloque pequeño de madera para la base.
Instrucciones:
1. Enrollar el cable de cobre alrededor del tubo de cartón, diez o más vueltas (espiras paralelas), dejando al menos 5 cm de cada extremo sin enrollar y perfectamente recto. Retire el tubo ya que sólo se utiliza para construir la bobina. También puedes enrollar el cable con cualquier objeto cilíndrico, por ejemplo, la misma pila del tipo D.
Los extremos deben coincidir, es decir, quedar perfectamente enfrentados (ver figura 1) ya que serán los ejes de nuestro motor. Se puede utilizar una gota de pegamento entre cada espira o dar dos vueltas del cable de los extremos sobre la bobina para evitar la deformación de ésta.
2. Utilizando la lija, retirar completamente el esmalte del cable de uno de los extremos de la bobina, dejando al menos 1 cm sin lijar, en la parte más próxima a la bobina (ver figura 2).
3. Colocar la bobina sobre una superficie lisa y lijar el otro extremo del cable, simplemente por uno de los lados (por ello no hay que dar la vuelta a la bobina). Dejar al menos 1 cm sin lijar de la parte más próxima a la bobina (ver figura 3).
4. Fijar el imán a uno de los lados de la pila utilizando para ello el pegamento (ver figura 4).
5. Utilizando los clips, dejar dos ganchos en cada uno de los extremos habiendo entre éstos un ángulo de 90º (ver figura 5). Unos alicates planos o de punta fina pueden ser muy útiles.
6. Utilizar la cinta adhesiva para fijar el clip de papel a cada uno de los extremos de la pila (ver figura 6), situando dichos extremos en el mismo lado que el imán.
7. Colgar la bobina sobre los extremos libres de los clips (ver figura 7). Si la bobina no gira inmediatamente debemos ayudarla levemente. En caso de no contar con un cilindro de mayor grosor podemos usar una de las pilas pero recordar cuanto más delgado sea el cilindro mayor número de vueltas debemos realizar.




Procedimiento del experimento 


Quitando el "esmalte" por un solo lado del cable de cobre

Pila con diurex 


Cable de cobre girando debido a la pila y al imán



Ley de Faraday





Material: Bobina  de inducción, multimetro.

Procedimiento: Conectar  el simulador:
http://tamarisco.datsi.fi.upm.es/ASIGNATURAS/FFI/apuntes/camposMagneticos/teoria/applets/variables/fem/fem.htm. Tabular y graficar los datos obtenidos.
Observaciones:
Equipo
Velocidad  del iman
mV máximo
mV minimo
1
5
1
-1
2
10
2.5
-2.5

3

15
3.5
-2.5

4
20
4
-4

5
25
2
-2

6
30
+3
-3



Equipo #1

Equipo #2


Equipo #3
Equipo #4

Equipo #5

Equipo #6